VINYL CATION REARRANGEMENT IN THE SOLVOLYSIS OF 5α -CHOLEST-1-EN-1-YL TRIFLATE 1

Giorgio Ortar*and Enrico Morera

Centro di Studio per la Chimica del Farmaco del C.N.R., Istituto di Chimica Farmaceutica dell' Università, 00185 Roma, Italy

Abstract: Solvolysis of 1 in buffered aqueous acetone gives a mixture of the rearranged alcohols 2, 3, 4, and 5 as a result of a possibly concerted ionization migration to the double bond.

In spite of their preferred linear geometry, vinyl cations have been established as definite intermediates in the solvolysis reactions of a number of cyclic vinyl substrates, including simple 1-cyclohexenyl triflates. Vicinal alkyl substitution was observed to produce marked rate enhancements in six-membered rings although both rearranged and unrearranged products are invariably obtained. However, in one case complete rearrangement was observed and a diene was obtained as a result of an exclusive elimination path. A concerted, presumably anchimerically assisted, alkyl migration was suggested.

We wish to describe here the solvolysis of a steroidal 1-cyclohexenyl triflate which affords, near quantitatively, a mixture of rearranged products of substitution.

5a-Cholest-1-en-1-yl triflate (1) was obtained from 5a-cholestan-1-one according to literature procedures.

Reaction of $\underline{1}$ in acetone-water (9:1), buffered with sodium acetate, for 89 h at 65 °C gave $\underline{2}$ (2.5%), $\underline{3}$ (14.5%), $\underline{4}$ (41%), and $\underline{5}$ (24%). Each of the four alcohols was found stable to the solvolysis conditions. A 4% of elimination products was found in addition. No cholestan-l-one was observed.

The structure of epimers $\underline{2}$ and $\underline{3}$ was deduced on the basis of spectral data. The relative orientation of the 10-OH group was assigned from the magnitude of the pyridine-induced solvent shifts of the 13-Me group (Table I). 9

Inspection of Dreiding model of the assumed intermediate $\underline{6}$ (see later) gave further support to the above assignment for an α -attack by the solvent on the position 10 should be largely favoured over one from the congested β side. $\Delta\delta$ values of the olefinic protons (cf. compounds $\underline{17}$ and $\underline{18}$ of ref. 9b)

suggested the existence of ring B as a mixture of the two twist-chair like forms TC_1 and TC_9 with a dynamic resultant approaching the favoured twist-chair conformation with the <u>gem</u>-substituents (Me and OH) on the axis carbon. LOA

A chemical confirmation was conversely required for $\underline{4}$ and $\underline{5}$ in order to rule out alternatives $\underline{7}$ which would exhibit similar spectral properties.

Hydrogenolysis of $\underline{4}$ (or $\underline{5}$) with a mixed hydride (LiAlH₄-AlCl₃), ¹¹ followed by ozonolysis of the resulting olefins, gave as a main product the diketone $\underline{8}$. ¹²

The configuration of the 2-OH group could not be derived unambiguously from the pattern of the geminal proton as in the case of 17-methylene-16-substituted steroids 13 owing to the flexibility of the A-nor ring.

Slopes observed on Eu(dpm)₃ shift analysis (Table I) indicated that the distance \underline{r} of 13-Me protons from the oxygen atom was in the order $\underline{r}_{\underline{4}} > \underline{r}_{\underline{5}}$, thus establishing the stereochemistry of $\underline{4}$ and $\underline{5}$ as depicted. 14

The unexpected independence of the 13-Me signal from the added Eu(dpm) $_3$ in $\underline{2}$ was believed to be the consequence of an accidental close proximity to the critical value (54.7°) of the angle ϑ , as defined in the McConnell-Robertson equation for pseudo-contact shift. A non negligible influence of the angle factor was also apparent with $\Pr(\text{dpm})_3$, for a steeper (or at least equal) shift gradient could be predicted for $\underline{2}$ on merely distance considerations.

The solvolysis of $\underline{1}$ is reminiscent of others in the steroid field involving

Compd Signal	<u>2</u>	3	4	<u>5</u>
13-Me	0.65(s) ^a -0.11 ^b 0.00 ^c -2.32 ^d	0.67(s) ^a -0.05 ^b 1.87 ^c -2.52 ^d	0.68(s) ^a +0.01 ^b 0.98 ^c	0.67(s) ^a -0.01 ^b 1.22 ^c
10-Me	1.20(s) ^a	1.27(s) ^a -0.30 ^b	1.75(d,J=1.5Hz) ^E -0.22 ^b 6.65 ^c	1.77(d,J=1.5Hz) ^a -0.20 ^b 6.80 ^c
С-2 Н	5.68(m) ^a -0.41 ^b 12.05 ^c	5.70(m) ^a -0.25 ^b 11.95 ^c	4.54(m) ^a -0.41 ^b	4.57(m) ^a -0.40 ^b

Table I. Relevant 1H NMR Data of the Solvolysis Products

a δ values (ppm) relative to TMS in 0.1 M CCl₄ solutions. b Pyridine-induced solvent shifts: $\Delta \delta = \delta_{\text{CCl}_4} - \delta_{\text{C}_5 \text{D}_5 \text{N}}$ c Slopes obtained by least squares from plots of Eu(dpm)₃ induced shifts $\underline{\text{vs}}$. Eu(dpm)₃: substrate molar ratio. d Slopes obtained with Pr(dpm)₃.

 S_N at saturated carbon to give A-nor-B-homo structures, 10b,16 but is uncommon in respect of 1-cyclohexenyl triflates for the mild experimental conditions, and the complete rearrangement and substitution observed.

The abnormal instability of $\underline{1}$ (see note 5), probably as a consequence of compression with the adjacent C-ll H, should account for our result. In fact 3β -acetoxy-D-homo- 5α -androst-17-en-17a-yl triflate ($\underline{9}$), when reacted as $\underline{1}$ for $\underline{9}$ 6 h at 80 °C, was practically unchanged.

The $5(10\rightarrow 1)$ abeo alcohols arise <u>via</u> an exclusive migration of the adjacent cyclohexenyl bond to the vinyl cation centre and formation of the allylic cation <u>6</u>.

Since no 10-Me migration nor unrearranged products were detected, we suggest, according to Stang, 3 that the reported rearrangement could be a 'concerted ionization migration to the double bond'.

References and Notes

- 1) For recent reviews on vinyl triflates and on vinyl cation chemistry, see respectively: P.J. Stang, Acc. Chem. Res., 11, 107 (1978), and M. Hanack, Angew. Chem. Int. Ed. Engl., 17, 333 (1978).
- 2) a) W.D. Pfeifer, C.A. Bahn, P.v.R. Schleyer, S. Bocher, C.E. Harding, K. Hummel, M. Hanack, and P.J. Stang, J. Am. Chem. Soc., 93, 1513 (1971); b) M. Hanack, E.J. Carnahan, A. Krowczynski, W. Schoberth, L.R. Subramanian, and K. Subramanian, J. Am. Chem. Soc., 101, 100 (1979) and references therein.
- 3) P.J. Stang and T.E. Dueber, Tetrahedron Lett., 563 (1977).
- 4) M.P. Cava and B.R. Vogt, <u>J. Org. Chem.</u>, <u>30</u>, 3775 (1965).
- 5) P.J. Stang and T.E. Dueber, Org. Synth., 54, 79 (1974). 1 was isolated as a brown oil and could not be crystallised. An attempted filtration on silica gel resulted in a partial decomposition to an olefin, probably $5(10 \rightarrow 1)$ abeo-cholesta-1,10(19)-diene, as disclosed by H NMR of the eluate / two additional 1:1 signals at δ 4.90 and 5.17 (cf. ref. 16)/. Spectral data of 1: IR (CHCl₃) 1390 and 1130 cm (OSO₂); H NMR (CCl₃) δ 0.65 (3H, s, $\bar{1}$ 3-Me), 1.08 (3H, s, 10-Me), 5.63 (1H, t, J=4.5 Hz, 4C-2 H); MS m/e, rel intensity, 518(M⁺, 7), 503(2), 405(3), 386(5), 368(100), 364(22).
- 6) Yields refer to pure compounds isolated by deactivated (grade III) Woelm neutral alumina / n. hexane-benzene (3:2) as eluant/. 2: mp 74-74.5 °C (MeOH); \sqrt{a} -37° (1%, CHCl₃); IR (KBr) 3460 cm⁻¹(OH). 3: mp 112-114 °C (MeOH); \sqrt{a} -50° (1%, CHCl₃); IR (KBr) 3340 cm⁻¹(OH). 4: mp 55.5-57.5 °C (MeOH); \sqrt{a} -46° (1%, CHCl₃); IR (KBr) 3400 cm⁻¹ (OH). 5: mp 104-105.5 °C (MeOH); \sqrt{a} -49° (1%, CHCl₃); IR (KBr) 3280 cm⁻¹ (OH). Satisfactory analytical data were obtained for all the new compounds described in this paper, 1 excepted.
- 7) The small olefin fraction was shown by H NMR to be a mixture of at least two products and was not further examined.
- 8) The original steroid numbering is retained according to Rule 2S-9 of IUPAC-IUB 1971 Definitive Rules for Steroid Nomenclature.
- 9) a) S. Ricca, B. Rindone, and C. Scolastico, Gazz. Chim. Ital., 99, 1284 (1969); b) P.V. Demarco, E. Farkas, D. Doddrell, B.L. Mylari, and E. Wenkert, J. Am. Chem. Soc., 90, 5480 (1968).
- 10) a) J.B. Hendrickson, <u>J. Am. Chem. Soc.</u>, 83, 4537 (1961); 84, 3355 (1962); Tetrahedron, 19, 1387 (1963); J.B. Jones, J.M. Zander, and P. Price, J. Am. Chem. Soc., 89, 94 (1967); b) M. Nussim and Y. Mazur, Tetrahedron, 24, 5337 (1968); c) N.Lj. Mihailović, Lj. Lorenc, J. Forŝek, H. Neŝović, G. Snatzke, and P. Trska, Tetrahedron, 26, 557 (1970).
- 11) J.H. Brewster and H.O. Bayer, <u>J. Org. Chem.</u>, <u>29</u>, 116 (1969).
- 12) $\frac{8}{\text{cm}} = \frac{\text{(oil)}}{\text{(COMe)}} = \frac{\sqrt{a}}{\text{D}} + \frac{82^{\circ}}{\text{H}} = \frac{\text{(1\%, CHCl}_3)}{\text{30.72 (3H, 4s, 13-Me)}} = \frac{1736}{\text{(cyclopentanone)}} = \frac{1709}{\text{Me}} = \frac{$
- 13) F.A. MacKellar and G. Slomp, Steroids, 11, 787 (1968).
- 14) The angular factor contribution in the McConnell-Robertson equation 15 was neglected.
- 15) A.F. Cockerill, G.L.O. Davies, R.C. Harden, and D.M. Rackham, Chem. Rev., 73, 553 (1973).
- 16) C.W. Shoppee, R.E. Lack, S.C. Sharma, and L.R. Smith, J. Chem. Soc. (C), 1155 (1967), and references therein.